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ABSTRACT
In a typical network with a set of individuals, it is common to have multiple types of interactions between
two individuals. In practice, these interactions are usually sparse and correlated, which is not sufficiently
accounted for in the literature. This article proposes a multilayer weighted stochastic block model (MZIP-
SBM) based on a multivariate zero-inflated Poisson (MZIP) distribution to characterize the sparse and
correlated multilayer interactions of individuals. A variational-EM algorithm is developed to estimate the
parameters in this model. We further propose a monitoring statistic based on the score test of MZIP-
SBM model parameters for change detection in multilayer networks. The proposed model and monitoring
scheme are validated using extensive simulation studies and the case study from Enron E-mail network.
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1. Introduction

Network data are ubiquitous nowadays. Many physical, bio-
logical, and social systems are structured as networks to show
pairwise relations or interactions among entities. These interac-
tions in modern complex systems are often of multiple types.
For example, in online social networks such as Twitter, users
can have different types of interactions including “friendship,”
“following,” and “retweeting.” A set of Internet users can com-
municate with each other through E-mail, messaging, and social
media. In bibliographic networks, two authors may coauthor
an article and/or cite each other’s work. Such multiple interac-
tions among a set of individuals can be represented as multi-
layer networks where each layer represents one type of inter-
action (Kivelä et al. 2014). Note that the multilayer network
systems are not random combinations of single network lay-
ers but are organized with significant correlations among the
layers (Nicosia and Latora 2015). It is therefore important to
characterize the correlations among these multiple layers in a
network.

In real-world applications, the interactions are sometimes
directional and include other quantitative information. For
example, there are senders and recipients for phone calls, text
messages, and E-mails indicating the contact direction from
sender to recipient; the activities in online social networks
such as “mention” and “following” are also directional. When
these interactions are aggregated at some specific time scale,
we get a directed weighted network with the edge weights
representing the frequency or intensity of the interactions. For
example, Figure 1 shows a two-layer network of E-mails among
13 employees of Enron Corporation. The first layer represents
the ordinarily sent E-mails, and the second layer represents the
carbon copy/blind carbon copy (cc/bcc) E-mails. Each edge
represents the E-mails from the sender to the receiver using

CONTACT Kaibo Wang kbwang@tsinghua.edu.cn Department of Industrial Engineering, Tsinghua University, Beijing, China.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/TECH.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TECH.

cc/bcc, with the weight (expressed through edge width in the
figure) representing the frequency of such E-mails. It is obvious
that the interaction patterns of these two layers are similar but
have layer-specific features as well. It is clear from this figure that
the directed weighted version of a social network contains richer
information than the undirected binary representation (Gao
et al. 2017), and could help us better understand the underlying
behavior of a network. Therefore, multilayer network models are
required to capture the layer-specific information as well as the
correlations among different layers for this kind of interaction
data.

Moreover, individuals in a network tend to form densely
connected subgroups called communities (Girvan and New-
man 2002). The members of the same community show more
interactions with each other than with individuals from any
other communities. In Figure 1, these employees fall into two
communities according to their identities at Enron Corporation.
It is clearly shown that there are dense interactions between
vertices of the same color, while the interactions between the
two communities are sparser.

To characterize these kinds of interactions in a multilayer
network, we propose a new stochastic block model (SBM) based
on multivariate zero-inflated Poisson distribution called MZIP-
SBM for multilayer directed weighted networks. The SBM
framework is used to characterize the community structure of
such a network. We assume that different layers share the same
community structure, that is, the community label of a specific
individual is the same across all layers, but the interaction
intensity and density could be different for different layers. The
concepts of interaction intensity and density are characterized
in different parameters in the proposed model, enabling us
to take care of sparse networks with only a few vertex pairs
interacting frequently, while the rest remain inactive. This
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Figure 1. A two-layer directed network of Enron E-mails among 13 employees.
The two layers represent directly sent E-mails and cc/bcc E-mails, respectively.
Community labels of them are represented by different colors of vertices.

sparsity phenomenon is frequently observed in real networks
with a number of nodes: the communication counts between
all pairs of nodes are zero for a large proportion of pairs,
and are much larger than one for almost all the rest ones,
which motivates us to use a zero-inflated distribution to
model these interaction counts. Furthermore, the proposed
model could capture more characteristics of a multilayer
network by utilizing correlations among different layers as
well as the weight and direction information on the edges.
A variational-EM algorithm is proposed to estimate the
parameters in this model. We also propose a monitoring
scheme based on a score test of the proposed model. Simulation
experiments and a case study on the Enron E-mail corpus
show that this model could characterize the sparsity feature and
correlations among the layers of multilayer weighted networks
well.

The remainder of the article is organized as follows.
Section 2 reviews the literature related to statistical network
modeling, extensions to multilayer networks, and network
monitoring. In Section 3, we introduce the MZIP-SBM model
for count-weighted multilayer networks. Section 4 describes
the variational-EM algorithm for parameter estimation in
the proposed model. Section 5 introduces a monitoring
scheme according to the proposed model based on score test
statistics. In Section 6, both simulation experiments and a
case study on the Enron E-mail network are conducted to
validate the performance of the proposed MZIP-SBM model
and the consequent monitoring scheme. Finally, we conclude
this work and propose several future research directions in
Section 7.

2. Literature Review

There have been rich works in both statistical network modeling
and anomaly detection on networks. In this section, we review
the above two fields of research that are related to this work.

2.1. Statistical Network Modeling

Network modeling is a blooming research area with contribu-
tions from different fields, such as physics, statistics, and com-
puter science. We will briefly review statistical modeling works
of simple (single-layer) and multilayer networks; see Golden-
berg et al. (2010) and Kivelä et al. (2014) for a more detailed
survey for single-layer and multilayer networks, respectively.

2.1.1. Statistical Models for Single-Layer Networks
Statistical network modeling begins with investigating the gen-
eration mechanism of a simple network, which could be the
result of aggregating the observations of interactions among
a group of individuals through a specific time period. Binary
edges are mostly used to represent whether there exists any
observed interactions between two vertices. Erdős and Rényi
(1960) introduced the earliest random graph to characterize
the generative mechanism of a subset of binary networks. In
a simple random graph, the probability of connection between
any two vertices is set to independently follow a certain proba-
bility distribution. Based on the idea of modeling the probability
distribution of connection, there are following works on mod-
eling networks using different approaches to link the presence
of edges with vertex-specific information. Recent statistical net-
work models in literature generally fall into two classes: the SBM
and the latent space model.

The SBM was formally brought up by Holland, Laskey, and
Leinhardt (1983) to characterize the community structure in
networks. Under the setting of a SBM, the edges in a social
network are conditionally independent, given the latent com-
munity membership of each vertex. In such a type of model,
all the members in the same community have the same prob-
ability distribution of connecting to each other, and thus these
members in the same community are structurally equivalent
(Holland, Laskey, and Leinhardt 1983) or stochastically equiv-
alent. To consider node-specific variability in the interactions,
Airoldi et al. (2008) further developed a mixed membership
SBM that assigned mixed community memberships to nodes.
Another modification was the work by Karrer and Newman
(2011), which proposed the degree-corrected SBM to incorpo-
rate heterogeneous vertex degrees into SBMs. Aicher, Jacobs,
and Clauset (2015) introduced the weighted SBM to generalize
the SBM to networks with edge weights drawn from an expo-
nential family distribution.

Another group of statistical network models is based on the
latent space model. The latent space model was first proposed by
Hoff, Raftery, and Handcock (2002). It embeds the individuals
into a latent space, and the probabilities of forming edges are
then developed according to a projection function that is influ-
enced by the latent positions of the corresponding end vertices.
Further tasks, such as link prediction, could be conducted based
on this latent space model (Miller, Griffiths, and Jordan 2009).
Unlike the underlying assumption for community structure in
networks, the latent space model does not have explicit group-
clustering interpretations.

2.1.2. Models for Multilayer Networks
Rich information about multiple types of connections or
interactions calls for the research in multilayer modeling
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of networks. The history of multilayer networks and more
sophisticated features as well as terminologies are explained by
Kivelä et al. (2014) in detail. Usually in the statistical network
modeling field, a multilayer network represents a network where
different types of edges make up different layers over the same
set of vertices. Han, Xu, and Airoldi (2015) studied a multigraph
SBM which treated the probability of forming binary edges in
different layers independently. Paul and Chen (2016) proposed
a restricted multilayer SBM to characterize multi-relational
binary data, but these two works were not able to deal with
weighted edges. De Bacco et al. (2017) extended the mixed
membership SBM to multilayer networks, assuming the proba-
bility distribution of forming edges in each layer to be Poisson
distributions with mean affected by an affinity matrix to describe
the density of edges between each pair of groups for each
layer.

However, these models for multilayer networks did not
explicitly characterize the correlations among different layers,
which is a major feature for multilayer networks. Furthermore,
the existing models for weighted networks assumed the
interaction counts follow a Poisson distribution, which did not
consider the sparsity characteristics of networks in real world.
Caring for this issue, our proposed model used zero-inflated
Poisson distribution to characterize the sparse interactions in
each layer and explicitly characterize the correlations among
different layers in multilayer networks.

2.2. Network Monitoring

The main purpose of network monitoring lies in detecting
sudden changes across the network. These abrupt changes are
also referred to as anomalies in literature. Savage et al. (2014)
surveyed anomaly detection works in online social networks,
and classified this field according to whether the target network
is static or dynamic, and whether the vertices are labelled with
classes or attributes. Another review of statistical methods for
monitoring social networks was given by Woodall et al. (2017),
which also showed the relationships between network monitor-
ing methods and monitoring methods in engineering statistics
and public health surveillance.

One group of change detection methods for networks are
based on the community structure (Jun and Shun-zheng 2009),
including methods based on variants of SBMs (Wilson, Stevens,
and Woodall 2016).

Another group of methods monitors representative network
statistics to detect anomalies. For example, Priebe et al. (2005)
used scan statistics on networks to detect anomalous events
on E-mail networks. The cross-correlations between scanned
network metrics in the moving window were utilized to detect
network changes by Cheng and Dickinson (2013). Traditional
monitoring tools from the field of statistical process control
(SPC) such as the cumulative sum (CUSUM) and the exponen-
tially weighted moving average (EWMA) charts are conducted
based on network metrics such as average betweenness and
average closeness. Neil et al. (2013) adopted a scan statistic
for both time window and subgraphs to detect locally anoma-
lous subgraphs in computer networks. Azarnoush, Paynabar,
and Bekki (2016) proposed a likelihood method based on the

edge existence as a function of vertex attributes to monitor the
underlying network model. Peel and Clauset (2015) combined
a generalized hierarchical random graph model with a Bayesian
hypothesis test to determine the change point in evolving net-
works. However, these works are not applicable to multilayer
networks.

To the best of our knowledge, there is no work proposed for
monitoring multilayer networks, especially for count-weighted
multilayer networks with sparse interactions. In the following,
a model focusing on characterizing count-weighted multilayer
networks will be introduced, with a monitoring scheme based
on this model to detect the community-level behavioral changes
in such networks.

3. MZIP-SBM: A Stochastic Block Model Based on
MZIP Distribution

In this section, we first introduce the representation of a mul-
tilayer network as well as related notations, then we introduce
the SBM for multilayer directed weighted networks based on a
multivariate zero-inflated Poisson (MZIP) distribution, called
MZIP-SBM. By using both the multilayer structure of the ver-
tices as well as the weight and direction information on the
edges, the proposed model could characterize a multilayer net-
work more comprehensively.

3.1. Network Representation

We consider a directed multilayer graph G = {V , E} with M
layers, where the vertex (also called node, these two expressions
are equivalent in this article) set V = {vi}i=1,...,N consists of
N vertices that are presented in each layer of the network, and
the edge set E = {E1, E2, . . . , EM} consists of directed edges
in this multilayer network, with Em representing the edges in
layer m. Each edge connects two vertices in one specific layer
representing one kind of interaction. For example, phone calls,
text messages, and face-to-face contacts are multiple measures
of social interaction and could be represented as separate layers
in a multilayer network.

It is common to represent networks using adjacency matri-
ces. Throughout this article, we use bolded letters to represent
vectors and matrices, and use German letters to represent ten-
sors. In an adjacency matrix A, the element in the ith row and
the jth column represents the interaction count from vertex
i to vertex j during the specific time period. Since we con-
sider directed weighted networks, the adjacency matrix of each
network should be asymmetric and integer-valued. Note that
generally we do not allow loops (namely, the case where an edge
connects one vertex to itself), so the diagonal elements of such
an adjacency matrix should be 0.

In the multilayer extension, we could use a three-dimensional
tensor to represent such a network: A = {Aij}, i = 1, . . . , N;
j = 1, . . . , N. Here Aij is a vector of length M: Aij = (A(1)

ij ,
A(2)

ij , . . . , A(M)
ij ), where M is the total number of layers in the

network. For example, we use tensorA of dimension 3×3×2 to
represent the two-layer network in Figure 2, with each element
of this tensor represented by Am

ij where i, j ∈ {1, 2, 3}, m ∈ {1, 2}.
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Figure 2. Illustration of a multilayer network. This network can be represented as
a tensor A of dimension 3 × 3 × 2.

3.2. Formulation of MZIP-SBM

In the proposed model, we use the common settings of a
SBM with K blocks (communities). A random vector Zi ∈
{1, . . . , K}, i = 1, . . . , N is used to represent the community
label of vertex vi, with Zi = k if node i belongs to the kth
community. Note that we assume each vertex only belongs
to one community, and all layers share the same community
structure. This assumption is reasonable for depicting several
kinds of interactions among a group of individuals falling into
different communities.

Different from ordinary SBMs for unweighted networks
where the corresponding element for vertices vi and vj in the
adjacency matrix follows a Bernoulli distribution (Holland,
Laskey, and Leinhardt 1983), we aim to characterize the
sparse interaction counts over the multilayer network and
the correlations among different layers while preserving the
community structure, and thus we choose to model the
multivariate weighted edges using multivariate zero-inflated
Poisson (MZIP) distribution proposed by Li et al. (1999). The
observed edge weights between vertex i and vertex j in all the
M layers denoted by a vector Aij of length M are determined by
an MZIP distribution. There are two groups of parameters in
the MZIP distribution: λ and p where λ = (λ10, . . . , λM0, λ00)
and p = (p0, p1, . . . , pM , p11). The parameters of this MZIP
distribution only depend on which communities vertex i and
vertex j come from

Aij|Zi = q, Zj = � ∼ MZIP(λq�, pq�), (1)

where λq� and pq� represent the MZIP parameters for edge
weights between community q and community �. Additionally,
if Aij follows an MZIP distribution with parameters θ = (λ, p),
then

(A(1)
ij , A(2)

ij , . . . , A(M)
ij ) (2)

∼ (0, 0, . . . , 0) with probability p0

∼ (Poisson(λ10 + λ00), 0, . . . , 0) with probability p1

∼ (0, Poisson(λ20 + λ00), 0, . . . , 0) with probability p2
...
∼ (0, 0, . . . , Poisson(λM0 + λ00)) with probability pM

∼ multivariate Poisson(λ10, λ20, . . . , λM0, λ00)

with probability p11,

where p0 + p1 + p2 + · · · + pM + p11 = 1. Here λ00
characterizes the correlation among interaction counts across
layers. The parameters of the above MZIP distribution con-
sist of two groups: λ and p. They play different roles in this
model. Parameter vector pq� determines the proportion of the
following situations that may occur between community q and
�: absolutely no interaction in any layer, interactions following a
Poisson distribution in only one layer, and interactions follow-
ing a multivariate Poisson distribution in all layers; the other
parameter vector λq� controls the specific rate or intensity of
the Poisson-distributed interactions. They generally character-
ize the interaction density and intensity between community
q and community �, respectively. This configuration provides
great flexibility in characterizing count-weighted multilayer net-
works. On one hand, p gives a flexible representation of the
sparsity level in all layers. On the other hand, λ00 represents the
correlation between any two layers in the multivariate Poisson
case, and thus could flexibly describe the over all correlations
among different layers. In the next section, a variational-EM
algorithm is introduced to estimate both the community labels
{Zi}1≤i≤N and the MZIP parameters in this model.

4. Parameter Estimation

Given the dataset of a multilayer network, we can identify
which community each vertex belongs to as well as estimate
the model parameters for the underlying MZIP distribution.
Because traversing discrete community labels Z = (Z1, . . . , ZN)

is of exponential complexity with regard to the number of
nodes N, obtaining the exact maximum likelihood estimates
of MZIP-SBM is intractable. Therefore, we adopt variational-
EM methods to achieve the approximate maximum likelihood
estimates for SBMs (Mariadassou, Robin, and Vacher 2010).
The proposed variational-EM algorithm is a combination of
the EM algorithm and variational inference methods where
the evidence lower bound (ELBO) is used to approximate the
conditional distribution of community labels Z during an EM
iteration procedure.

Let A denote the adjacency tensor of a multilayer net-
work as formulated in Section 3.2: A = {Aij}i,j=1,...,N , =
Aij(A(1)

ij , A(2)
ij , . . . , A(M)

ij ). The community label of any node i
is treated as a latent random variable that follows a multinomial
distribution

Zi
iid∼ M(1; π1, . . . , πK), (3)

where M(1; π1, . . . , πK) denotes the multinomial distribution,
π = (π1, . . . , πK) with 0 < πk < 1 and

∑
k πk = 1

represents the probability for a given vertex to belong to class
k, k = 1, . . . , K. We assume that the number of communities
K is known. Choosing the proper number of communities is
another model selection problem, which we will briefly discuss
at the end of this section.

Then (A, Z) is treated as the complete dataset where Z is
treated as unobserved latent variables. The problem is addressed
by the estimation of both community labels Z and parameters
γ = (π , θ), where π denotes the parameters of the multinomial
distribution in (3), and θ = (λ, p) is the set of MZIP parameters
in (2).
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According to the conditional independence of the interaction
counts over edges given Z, we can decompose the log-likelihood
of the complete dataset as

logP(Z, A; γ ) = logP(Z; γ ) + logP(A|Z; γ )

= logP(A) + logP(Z|A; γ ). (4)

For convenience, we here denote P(Zi = k) as Zi(k). Note that
Zi(k) is a probability, which is different from Zi ∈ {1, . . . , K}.
Then according to (1) and (3),

logP(Z, A; γ ) =
N∑

i=1

K∑
q=1

Zi(q) log πq

+
∑
i �=j

K∑
q,�=1

Zi(q)Zj(�) log fq�(Aij), (5)

where fql(·) := fql(·; θ) is the probability density function of the
MZIP distribution over the interaction count vector of length M
between community q and community � in (1).

Under the variational inference framework, we first find the
ELBO of the log-likelihood of the incomplete dataset P(A)

ELBO(RA, γ ) = E(logP(Z, A; γ )) − E(log RA(Z)) (6)
= E(logP(A|Z; γ )) − KL(RA(Z),P(Z|A; γ )),

where KL denotes the Kullback–Leibler divergence and RA(·)
denotes the distribution we use to approximate P(Z|A). By
maximizing this ELBO, we try to search for an optimal RA(Z)

that makes the conditional likelihood of the observed data large
and at the same time makes the distance between RA(Z) and
P(Z|A) small.

To give an efficient maximization result of the ELBO, we
limit the search of RA(Z) to the class of completely factorized
distributions (namely, the mean-field variational family)

RA(Z) =
∏

i
M(Zi; τ i), (7)

where M denotes the multinomial distribution. We treat
τ i as variational parameters to be optimized so that RA(Z)

fits P(Z|A; γ ) as well as possible: τ i = (τi1, . . . , τiK) with∑K
q=1 τiq = 1, ERA(Zi(q)) = τiq, and ERA(Zi(q)Zj(�)) = τiqτj�.
With the mean-field family restriction, the ELBO can be

rewritten as

ELBO(RA, γ ) = −
∑

i

∑
q

τiq log τiq +
∑

i

∑
q

τiq log πq

+
∑
i �=j

∑
q,�

τiqτj� log fq�(Aij). (8)

To maximize the ELBO with respect to both RA(·) and γ ,
we adopt the following iterative procedure: denoting by R(r)

A and
γ (r) the estimates after r steps, we compute{

R(r+1)
A = arg maxRA factorized ELBO(RA, γ (r)),

γ (r+1) = arg maxγ ELBO(R(r+1)
A , γ ).

(9)

Given γ , we denote τ̂ as the variational parameter defining the
distribution

R̂A(·) = arg max
RA(·) factorized

ELBO(RA, γ ). (10)

After some deviation, we can obtain that the optimal variational
parameter τ̂ satisfies the fixed point relation

τ̂iq ∝ πq
∏

j �=i

∏K

�=1
[fq�(Aij)f�q(Aij)]τ̂j� . (11)

Therefore, we can get τ̂ by iterating the relation in (11) until
convergence, and thus the distribution RA is updated with this
step.

For updating ELBO(RA, γ ) with respect to γ = (π , θ) for
a given distribution RA, the optimal π and θ = (λ, p) can be
calculated as below

π̂q = 1
N

∑
i

τiq, θ̂
q� = arg max

θ

∑
i �=j

τiqτj� log f (Aij; θ). (12)

Now that both steps in (9) are computable, we could iteratively
maximize the ELBO until convergence. An algorithmic sketch
of the procedure is shown in Algorithm 1. More details on the
derivation of this algorithm is in the supplementary materials.

Note that the number of communities K is assumed to be
known in the proposed algorithm. However, there may be many
situations where we do not know K. Here, we provide several
off-the-shelf methods for choosing an appropriate K when we
do not know it.

This issue has been discussed by a number of community
detection works (see, e.g., Wang and Bickel 2017). A simple
method is to define an objective function that represents the
goodness of fit for any partition of all the individuals. Then,
this objective function is optimized to find the best partition
for a series of K values. From these K values we choose the K
value that performs best under this criterion. For example, the
integrated classification likelihood (ICL) proposed by Biernacki,
Celeux, and Govaert (2000) could be used for this purpose,
which approximates the complete data likelihood. Other criteria
could also be considered for choosing a proper number of com-
munities, for example, cross-validation for large-sized networks
(Airoldi et al. 2008). In general, this issue is still a challenging,

Algorithm 1: Variational EM

Data: Observations A = {A(1)
ij , A(2)

ij , . . . , A(M)
ij }i,j=1,...,N ;

Number of communities K;
Result: Community labels Z = {Zi}i=1,...,N ; Model

parameters γ = (π , θ) with θ = {(λql, pql)} for
q = 1, . . . , K; � = 1, . . . , K

1 Initialization: Set t = 0; Set τ
(t)
i = (1/K, . . . , 1/K︸ ︷︷ ︸

length K

),

i = 1, . . . , N; ELBO(t) = 0;
2 Set t = t + 1;
3 E-step: Calculate τ (t) according to (11);
4 M-step: Calculate γ (t), ELBO(t) according to (12) and (8);
5 if |ELBO(t) − ELBO(t−1)| does not converge then
6 go back to Step 2;
7 else
8 Set Zi = maxk=1,...,K τ

(t)
ik , i = 1, . . . , N;

9 Return Z, γ (t) ;
10 end
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unsolved problem, which is beyond the scope of the proposed
model. More effective methods for choosing the correct number
of communities will be investigated in the future.

Another notion is that, the same as almost all the algorithms
for SBMs, this algorithm does not necessarily guarantee the
identified communities are more densely interacted inside than
with nodes outside (called assortative communities) (Newman
and Park 2003). In fact, we allow the communities to have
higher external interactions (called disassortative communi-
ties). Whether the communities are assortative or disassorta-
tive can be checked by comparing the MZIP parameters of
internal interactions with external interactions. Therefore, we
focus more on clustering those nodes with similar behaviors into
communities to interpret the network behavior.

5. Monitoring the Multilayer Stochastic Block Model

The main purpose of network monitoring lies in detecting
sudden changes across the network. These abrupt changes are
also referred to as anomalies in the literature (Savage et al.
2014). Current works in the literature are mostly on single-
layer networks and are not directly applicable to multilayer net-
works (Woodall et al. 2017). Furthermore, these works are not
designed for multilayer count-weighted networks considering
the sparsity and correlations among layers.

In this section, we propose a monitoring scheme based on
the proposed MZIP-SBM model. A control chart is established
based on the score test statistic of the proposed MZIP-SBM
model to detect possible changes in a series of multilayer net-
works.

In the proposed method, the model parameters of several
MZIP distributions are monitored to reflect the overall status
of the whole network. The problem of monitoring the whole
multilayer network is reduced to monitoring parameters of the
proposed MZIP-SBM model. More specifically, we aim to mon-
itor multiple multivariate ZIP processes simultaneously with
score test statistics.

Formally, the change-point detection problem on a mul-
tilayer network is formulated as follows. Suppose we observe
a series of multilayer networks Gt ’s, where each Gt being the
observed multilayer network at time t, which is uniquely
represented by the three-dimensional adjacency tensor At as
explained in Section 3. The change-point model is

Gt
iid∼

{
F(G; Z, θ0) for t = 1, . . . , τ
F(G; Z, θ1) for t = τ + 1, . . . ,

(13)

where τ is the unknown change point, F is the distribution
developed from the proposed MZIP-SBM model, and θ0, θ1

are the in-control and out-of-control parameters for this model,
respectively, with θ0 = {θq�(0)} = {(λq�(0), pq�(0))}, θ1 =
{θq�(1)} = {(λq�(1), pq�(1))}, q, � = 1, . . . , K. We assume the
community labels Z are known in this setting, which can be
regarded as the prior knowledge of the community structure of
the unchanged network.

Due to the underlying community assumption of the SBM,
developing a monitoring statistic for detecting change points in
this framework can be decomposed into two levels: (1) devel-
oping a monitoring statistic for each of the K2 community

pairs (they each have a set of parameters for the corresponding
MZIP distribution); and (2) aggregating these statistics as a
global monitoring statistic that fires an alarm when the network
becomes abnormal. For the first level, we adopt the score test
statistic for detecting the change in parameters of a specific
MZIP distribution; then, for the second level, we aggregate these
test statistics via adding them up to a global test statistic.

Since the null hypothesis is that the multilayer network is
in control, that is, θ = θ0, we can test the likelihood that the
observed network is generated according to θ0, and ring an
alarm when this likelihood is smaller than a threshold. This is
the main intuition for the proposed monitoring method. The
reason why we use the score test statistic is that the score test
only requires the parameter estimates under the null hypothesis
and thus avoids the heavy computation loads required to re-
estimate the parameters at each step. When we have no prior
knowledge on how the network will change, we test θq� =
(λq�, pq�) for every community pair (q, �) using the proposed
test statistic based on the following score and Fisher information

U(θ̂
q�

) =
N∑

i=1

∑
j �=i

∂ log Zi(q)Zj(�)L(θ̂
q�|Aij)

∂θq�
, (14)

I(θ̂
q�

) = −E

⎛
⎝ N∑

i=1

∑
j �=i

∂2 log Zi(q)Zj(�)L(θ̂
q�|Aij)

∂θq�∂θq�T

⎞
⎠ . (15)

And the test statistic sθq� is

sθq� = UT(θ̂
q�

)I−1(θ̂
q�

)U(θ̂
q�

). (16)

This test statistic measures the consistency of the observed
network with the in-control parameter values. Theoretically
this test statistic asymptotically follows a chi-square distribution
with d degrees of freedom where d is the total number of
parameters used for the test. In practice, if the sample size is not
large enough, the quantile of this statistic could be approximated
by an empirical quantile of in-control samples.

When there are K communities, there are K2 community
pairs, each of them having separate parameter values in the
MZIP model. Therefore, in all the three situations mentioned
above, we have to aggregate K2 local test statistics to obtain a
global monitoring statistic. For the whole of a network with K
communities, the summation of all the K2 test statistics is used
to establish the control chart

sφ =
K∑

q=1

K∑
�=1

sφq� . (17)

The upper control limit (UCL) is determined from P(sφ >

UCL) ≤ α, where α is a predefined false alarm rate. Note
that asymptotically sφql follows a chi-square distribution with
d degrees of freedom, where d is the number of parameters
used to test for the underlying MZIP distribution of each com-
munity pair. The sum of these K2 random variables, each fol-
lowing a chi-square distribution of degree d still follows a chi-
square distribution with d × K2 degrees of freedom. Therefore,
the control limits could be theoretically obtained by the in-
control distribution of sφ . Practically, if the sample size is not
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large enough, the quantile of this statistic could be approxi-
mated by an empirical quantile of in-control samples. For a
series of observations At , t = 1, 2, . . ., the global test statistic
{sφ(t)} is calculated at each time point. Once sφ(t) > UCL,
a change is declared. In summary, this monitoring method
contains three steps: (1) estimate the in-control model param-
eters and determine the UCL; (2) for each time slot, calcu-
late sφ according to (17); and (3) raise an alarm as long as
sφ > UCL.

Once an alarm is raised, a follow-up diagnosis procedure
can be used for identifying the source of the change in the
network: since the K2 community-level pairwise test statistics
sφq� , q, l = 1, . . . , K are of the same scale, we can develop a
common UCL for all the test statistics sφq� according to the
chi-square distribution or historical observations. Similar to the
global UCL for sφ , for the interactions between community q
and �, UCLq� can be determined from P(sφq� > UCLq�) ≤
α′, where α′ is again the predefined false alarm rate for test
statistics sφq� . If any sφq� > UCLq� is found, then proba-
bly the interaction behavior between community q and � is
abnormal.

In addition to taking the summation of each communal pair-
wise test statistic sφq� in (17), other methods could be consid-
ered to integrate these pairwise statistics. For example, Wilson,
Stevens, and Woodall (2016) chose to model the parameters
of each community pair separately, which is more convenient
for tracking anomalies but may lead to too many monitor-
ing statistics as K increases. Finding a cleverer way of com-
bining these pairwise statistics remains a challenge for future
work.

Given this test method, an alternative to testing all the MZIP
parameters is to test a subset of parameters that is more likely
to change or that corresponds to a suspected change in behavior
according to domain experience. By simply replacing θq� with
another subset of parameters φq� ⊆ θq� in (14) and (15),
different test statistics regarding to φq� are expressed and could
be easily calculated numerically. For example, we may monitor
φq� = λq� or φq� = pq� separately for each community
pair (q, �) to detect abrupt changes in the density or inten-
sity of interactions, respectively. Using a subset of parameters
could make the monitoring more sensitive for a specific type of
changes. Nevertheless, it may miss the changes on the parame-
ters excluded from the test statistic. Extensive experiments of

monitoring all and a subset of parameters are conducted in
Section 6.1.1.

6. Performance Study

6.1. Simulation Experiments

In this part, simulation experiments are carried out to validate
the performance of the proposed parameter estimation algo-
rithm as well as to evaluate the performance of the proposed
monitoring scheme.

6.1.1. Evaluation of Parameter Estimation
To evaluate the performance of the proposed parameter esti-
mation method, we simulate multilayer networks with known
parameters and assess the accuracy in estimating the parameters
with the proposed variational-EM algorithm.

Two sample sizes are considered here: n = 1 and n = 4,
where n is the number of multilayer networks used as samples
for estimating the model parameters. For each sample size, we
let the number of layers M = 3, the number of vertices N =
30, and the number of communities K = 2. An example of
generated multilayer networks is shown in Figure 3. The two-
community block structure is clear in this three-layer network,
and the interactions are correlated across these layers.

We repeat the estimation algorithm 100 times to assess its
estimation performance. When there are K = 2 communities,
we have four groups of MZIP parameters: (λ11, p11), (λ12, p12),
(λ21, p21), and (λ22, p22). The superscripts represent the com-
munity pair that corresponds to each set of MZIP parameters.
We set the parameters of the simulated multilayer network to
reflect a common phenomenon in real networks: interactions
between members from the same community are more frequent
than interactions between members from two different com-
munities, which is also called assortative mixing (Newman and
Park 2003). Therefore, we set the intensity parameters to be
λ11

10 = λ11
20 = λ11

30 = λ22
10 = λ22

20 = λ22
30 = 15, λ12

10 = λ12
20 = λ12

30 =
λ21

10 = λ21
20 = λ21

30 = 5. The degree of interaction correlation
among layers is set as λ

ql
00 = 15 when q = l, λ

ql
00 = 5 when

q �= l. For interaction density p, we set p11
0 = 0.2, p11

1 =
p11

2 = p11
3 = 0.1, p11

11 = 0.5; p12
0 = p21

0 = 0.5, p12
1 =

p12
2 = p12

3 = p21
1 = p21

2 = p21
3 = 0.15, p12

11 = p21
11 = 0.05;

p22
0 = 0.1, p22

1 = p22
2 = p22

3 = 0.1, p22
11 = 0.6.

Figure 3. Illustration of a simulated multilayer network.
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Table 1 displays the absolute estimation errors of λ and p,
with the standard deviations shown in brackets. We could tell
from the results that the proposed algorithm provides a satis-
factory estimation of the MZIP-SBM model. Moreover, when
we have more samples of multilayer networks, we could, in
general, estimate parameters with higher accuracy and lower
bias. Moreover, the identification accuracy of community iden-
tity Z in this parameter setting is 100% for both n = 1 and
n = 4, indicating our proposed algorithm performs quite well
in community identity classification.

6.1.2. Performance of Network Monitoring
To evaluate the performance of the proposed monitoring
scheme, we generate temporal multilayer networks at each
sampling epoch and compare the average time to signal of the
proposed monitoring scheme with the other five competitors:
the first one (ZIP) models each layer of the network indepen-
dently as a zero-inflated Poisson distribution and uses the sum
of score test statistics for each layer as the monitoring statistic;
the second (Poisson) is similar to the first method except that it
models the interactions in each layer with a Poisson distribution;
the third (SCAN) is a modification of the method proposed by
Priebe et al. (2005) for monitoring E-mail networks based on
the distribution of network scan statistics; the rest two methods
(BT and CL) are based on average betweenness and closeness of
nodes, which are ordinary network metrics for clustering effects.
Note that currently few monitoring methods for multilayer
count-weighted networks have been proposed, and existing
monitoring methods for single-layer binary networks suffer
with substantial information loss in count-weighted multilayer
networks. Therefore, here we just adapt three naive methods
(SCAN, BT, and CL) to this setting to provide a monitoring
performance baseline. We calculate the sum of the maximum
number of neighbors, betweenness and closeness in all layers
for the monitoring statistics for SCAN, BT, and CL methods.

We first compare these methods to detect changes within one
community, which aims to justify the effectiveness of the score
test under the proposed MZIP distribution. Then we compare
the performance of the proposed method when members form-
ing K = 2 communities with equal sizes. Different types of
structural changes in the community behaviors are considered.
We replicate each simulation 1000 times, and we then estimate
the average run length (ARL) from these 1000 simulations.

Multilayer networks with N = 10 vertices and M = 3
layers are generated according to the MZIP distribution in
(2). We intend to choose parameters to mimic the inter-

actions among an active community. Therefore, we assume
the interaction intensity to be at a relatively high level. The
parameter setting of the MZIP model is the same as that of
within community interactions for the first community in
Section 6.1.1: λ0 = (λ10, λ20, λ30, λ00) = (15, 15, 15, 15),
and p0 = (p0, p1, p2, p3, p11) = (0.2, 0.1, 0.1, 0.1, 0.5). Since
there is a constraint in p:

∑m
i=0 pi + p11 = 1, we only use the

elements excluding p11 to calculate the score test statistics. We
consider different possible changes in interaction patterns in
reality, and evaluate the out-of-control ARL performance of the
proposed monitoring method. We set the in-control ARL to be
200 approximately.

A variety of possible shift types and shift sizes are evaluated
for when the process goes out-of-control. These shift types
represent possible scenarios when the interaction patterns go
through structural changes: a change in λ indicates the change
in the intensity or frequency among individuals who have fixed
interaction channels (nonzero interaction counts); a change in p
indicates the overall interaction density, or the degree of sparsity
in the network.

The resulting ARLs when λ changes are shown in Table 2.
We could tell from the results that the proposed MZIP method
is able to detect all the change types we consider in this
experiment. It is especially efficient in detecting changes in
λ00, which indicates the correlation of interactions among
layers. The ZIP method is competitive in detecting changes
in (λ10, λ20, λ30), but it is less effective at detecting changes in
λ00. Both the Poisson and SCAN methods are ineffective in
most situations. Generally, only when the change in λ occur
across all layers and is significant enough could the Poisson
method have even limited ability to detect these changes. The
SCAN, BT, and CL methods could not detect any changes
in λ, because they all neglect the weight information of the
edges.

Table 3 shows the ARLs when p changes. When the pro-
portion of zero interaction counts decreases and the propor-
tion of multivariate Poisson counts increases, all these methods
can detect these changes. However, when the decrease in the
proportion of zero interaction counts transfer to the propor-
tion of interactions in each of the layers, only the proposed
MZIP method could quickly detect this change. Considering
that the structural changes in networks in applications usually
occur in both λ and p, the proposed MZIP method could
generally detect this kind of change faster than other com-
petitors when there is only one community in the multilayer
network.

Table 1. Parameter estimation results for N = 30, M = 3, K = 2.

(q, �) = (1, 1) (q, �) = (1, 2) (q, �) = (2, 1) (q, �) = (2, 2)

n = 1 n = 4 n = 1 n = 4 n = 1 n = 4 n = 1 n = 4

λ00 0.28(1.31) 0.03(1.39) 0.18(2.72) 0.14(2.56) 0.04(2.77) 0.00(2.84) 0.04(1.26) 0.02(1.34)
λ10 0.06(0.53) 0.02(0.44) 0.03(0.65) 0.03(0.55) 0.07(0.59) 0.00(0.54) 0.01(0.47) 0.06(0.49)
λ20 0.00(0.49) 0.01(0.44) 0.05(0.62) 0.02(0.56) 0.09(0.54) 0.05(0.69) 0.01(0.50) 0.06(0.42)
λ30 0.06(0.44) 0.03(0.47) 0.07(0.62) 0.01(0.51) 0.07(0.58) 0.03(0.54) 0.01(0.43) 0.06(0.46)

p0 0.060(0.053) 0.005(0.031) 0.006(0.034) 0.001(0.030) 0.002(0.032) 0.000(0.031) 0.062(0.055) 0.002(0.021)
p1 0.001(0.020) 0.003(0.019) 0.001(0.023) 0.001(0.022) 0.004(0.024) 0.001(0.021) 0.004(0.021) 0.003(0.018)
p2 0.001(0.020) 0.000(0.020) 0.000(0.022) 0.002(0.024) 0.002(0.022) 0.001(0.026) 0.002(0.020) 0.000(0.019)
p3 0.002(0.022) 0.001(0.020) 0.001(0.023) 0.000(0.023) 0.000(0.025) 0.002(0.023) 0.002(0.020) 0.001(0.022)
p11 0.061(0.064) 0.007(0.034) 0.003(0.016) 0.002(0.014) 0.001(0.014) 0.000(0.014) 0.063(0.064) 0.001(0.032)
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Table 2. ARL results for λ when monitoring one community.

λ MZIP ZIP Poisson SCAN BT CL

(15, 15, 15, 15) 200 200 200 216.45 200 200
(16, 15, 15, 15) 66.93 56.92 251.32 225.41 333.33 250
(17, 15, 15, 15) 6.34 7.28 244.47 223.66 166.67 250
(18, 15, 15, 15) 1.60 1.84 194.66 222.02 250 333.33
(16, 16, 16, 15) 110.23 8.27 272.60 214.49 166.67 250
(17, 17, 17, 15) 5.15 1.49 99.40 221.22 250 166.67
(18, 18, 18, 15) 1.27 1.01 32.92 227.38 500 166.67
(15, 15, 15, 16) 76.54 173.54 194.69 213.59 125 200
(15, 15, 15, 17) 27.90 163.67 187.29 219.84 166.67 142.86
(15, 15, 15, 18) 8.55 153.11 190.92 236.02 333.33 250
(15, 15, 15, 19) 3.80 133.98 193.13 221.44 142.86 500
(15, 15, 15, 20) 1.91 126.10 188.94 230.40 200 333.33

Table 3. ARL results for p when monitoring one community.

p MZIP ZIP Poisson SCAN BT CL

(0.2, 0.1, 0.1, 0.1, 0.5) 200 200 200 216.45 199 200
(0.15, 0.1, 0.1, 0.1, 0.55) 61.71 18.09 125.32 50.50 16.95 15.87
(0.10, 0.1, 0.1, 0.1, 0.60) 6.65 3.17 10.84 13.87 2.67 2.67
(0.05, 0.1, 0.1, 0.1, 0.65) 1.29 1.23 2.31 5.21 1.16 1.16

(0.05, 0.15, 0.15, 0.15, 0.5) 1.28 25.92 251.79 78.23 25 23.81

Table 4. ARL results for λ when monitoring two communities.

λ MZIP ZIP Poisson SCAN BT CL

λ0 200 200 200 215.52 200 200
λ11 = (20, 15, 15, 15) 21.52 1.04 130.22 214.21 214.03 211.46
λ11 = (20, 20, 20, 15) 18.13 1.00 17.26 211.03 213.71 217.37
λ11 = (23, 15, 15, 15) 1.08 1.00 47.18 222.89 208.91 220.94
λ11 = (23, 23, 23, 15) 1.01 1.00 3.33 212.82 219.06 206.25
λ11 = (15, 15, 15, 20) 26.46 198.20 209.07 210.86 200.92 212.85
λ11 = (15, 15, 15, 23) 2.56 146.62 191.25 221.28 203.93 212.43
λ12 = (15, 10, 10, 5) 193.29 19.60 170.46 231.39 214.90 218.81
λ12 = (15, 15, 15, 5) 92.71 1.88 97.30 219.86 208.59 226.03
λ12 = (18, 10, 10, 5) 37.70 2.55 103.50 222.91 210.11 199.84
λ12 = (18, 18, 18, 5) 1.18 1.01 17.84 213.25 204.46 222.39
λ12 = (10, 10, 10, 10) 77.04 141.70 204.65 217.73 207.51 218.25
λ12 = (10, 10, 10, 13) 25.53 140.63 203.89 218.61 213.84 202.59

We then extend this experiment to multilayer networks with
multiple communities. More specifically, we generate 3-layer
networks of 20 vertices, with these vertices distributed into K =
2 communities. Again, we use the parameter settings listed in
Section 6.1.1. Similar to the single-community experiment, both
shifts in λ and in p are considered. For changes in λ, we consider
the increase in inside-community interaction intensity (includ-
ing the increase in one layer and all layers), the increase in
inside-community interaction correlation, the increase in inter-
communal interaction intensity (including the increase in one
layer and all layers) and the increase in intercommunal inter-
action correlation. These scenarios correspond to changes in
λ11

10, (λ11
10, λ11

20, λ11
30), λ11

00, λ12
10, (λ12

10, λ12
20, λ12

30), λ12
00. For changes in

p, we also investigate the density due to both inside-community
and between-community interactions. The shift magnitudes are
set as 
(p) = (−0.1, 0, 0, 0, 0.1), 
(p) = (−0.15, 0, 0, 0, 0.15),
and 
(p11) = (−0.15, 0.05, 0.05, 0.05, 0) for these two types of
changes.

The ARLs under these different kinds of shifts are shown in
Tables 4 and 5. Similar to the results in the single-community
experiment, when the within-community interaction intensity
λ11 or the between-community interaction intensity λ12

increases while the correlation among layers does not change,
the ZIP method is more capable of detecting shifts quickly.
However, the ZIP method could not detect any changes if the
change occurs in correlations among the layers. The SCAN, BT,
and CL methods still perform unsatisfactorily in detecting these
changes. When the proportion of all-zero interactions decreases,
and the proportion of nonzero interactions in one single layer
increases, the proposed MZIP method would outperform the
ZIP method. Both BT and CL methods are sensitive to the
changes in p, but they are not capable to detecting changes in λ.
The SCAN method performs badly in all the changes evaluated
in this experiment. This result suggests that the proposed
monitoring method could detect increases both in inside-
community interactions and between-community counts and
was especially ideal for detecting the changes in correlations
among different layers.

According to our simulation experiment, we find that our
method is especially good at detecting changes in correlation
among different layers in the network. Therefore, for general
single-layer network monitoring without any community struc-
ture, some simple methods can be used, such as SCAN, BT,
or CL; when each layer is almost independent with any other
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Table 5. ARL results for p when monitoring two communities.

p MZIP ZIP Poisson SCAN BT CL

p0 200 200 200 215.52 200 200
p11 = (0.1, 0.1, 0.1, 0.1, 0.6) 68.87 5.23 31.31 184.75 11.41 12.01
p11 = (0.05, 0.1, 0.1, 0.1, 0.65) 45.52 1.55 6.00 166.98 4.55 4.52
p11 = (0.05, 0.15, 0.15, 0.15, 0.5) 42.43 47.28 182.70 205.73 48.85 48.63
p12 = (0.4, 0.15, 0.15, 0.15, 0.15) 149.78 7.10 201.32 125.79 5.88 6.08
p12 = (0.35, 0.15, 0.15, 0.15, 0.2) 104.06 1.76 197.69 125.79 2.73 2.62
p12 = (0.35, 0.2, 0.2, 0.2, 0.05) 54.33 94.33 210.02 166.73 25.57 28.02

layer in the multilayer network, we would suggest practitioners
to use the ZIP method. However, for most of the cases in real
applications, the inter-layer dependence in multilayer networks
is significant. In this case only our proposed method could
perform well for detecting correlational changes.

6.2. Application on Enron Multilayer E-mail Networks

The Enron E-mail corpus is a unique and famous set of network
data reflecting communications in a real energy trading com-
pany. The Enron scandal, publicized in October 2001, eventually
led to the bankruptcy of Enron Corporation. Following a March
26, 2003 ruling by the Federal Energy Regulatory Commission
of the United States of America, approximately 0.6 million E-
mails to/from Enron employees were publicly released. This
dataset consists of a collection of E-mails corresponding to the
E-mail among 184 unique E-mail addresses representing senior
management and other employees at Enron, collected over a
period from 1998 to 2002 (Priebe et al. 2005).

We establish a two-layer weighted directed network for this
E-mail dataset: the first layer represents the E-mails sent directly
from the source node to the target node, while the second layer
represents the cc/bcc E-mails, with each edge standing for an
E-mail from a sender to a receiver using cc/bcc. Intuitively
these two layers indicate different types of working relation-
ships: sending E-mails directly indicates collaboration on spe-
cific projects in most cases, but cc/bcc is more likely to show
the relation of superior and subordinate. The counts of E-mail
communications are treated as weights over edges. We first
apply the proposed variational-EM algorithm on this network
to show that the direction of interaction as well as the edge count
information could be well expressed by the proposed model.
Then we use monthly interaction data to establish a control
chart to verify that the anomalous time points detected by the
proposed monitoring scheme correspond to known events that
occurred in Enron Corporation.

To conduct the parameter estimation, we choose a subnet-
work of 13 vertices consisting of 2 cliques from May to August
in 2001 of this Enron E-mail network. These vertices are delib-
erately chosen so that they fall into two communities. The first
community contains 7 vertices corresponding to managers in
Enron, and the second contains 6 vertices that are ordinary
employees in Enron. We conduct the variational-EM algorithm
proposed in Section 4 on this two-layer network. The result
shows that considering the correlation of different layers is
helpful for discovering the true community structure.

The community labels for all these 13 vertices are correctly
identified by the proposed algorithm, that is, the first 7 vertices

Table 6. Estimated parameters in Enron E-mail dataset.

var (q, l) = (1, 1) (q, l) = (1, 2) (q, l) = (2, 1) (q, l) = (2, 2)

λ00 3.49 2.96e−04 3.82e−08 5.05e−07
λ10 4.57 0.60 0.50 23.62
λ20 0.01 5.98 0.05e−08 6.22

p00 0.29 0.92 0.27 0.03
p1 0.29 0.05 0.29 0.40
p2 0.03 0.02 0.27 6.5e−05
p11 0.41 0.01 0.18 0.57

belong to one community, and the remaining 6 vertices belong
to the other. The estimated values of the parameters are shown in
Table 6. λ00 reflects the correlation between the two layers in the
MZIP model, and λ10 +λ00 and λ20 +λ00 reflect the interaction
intensity in the two layers. p00, p1, p2, and p11 embody the inter-
action density of the network; they are, respectively, the prob-
abilities of both layers having no interactions, interactions that
occurred only in layer 1, interactions that occurred only in layer
2, and interactions that occurred in both layers according to a
bivariate Poisson distribution. (q, l) represents the community
pair that the sender and the receiver of an interaction belong to,
respectively. It is clear from the result that these 2 communities
show different behaviors in different layers, both in within-
community interactions and between-community interactions.
However, if we conduct the variational-EM algorithm on the
aggregated network or on these two layers separately, it could
not even correctly identify the two underlying communities,
that is, the estimated τ̂iq converges to be the same value for any
q and i, which implies that every individual is equally likely to
belong to any community. This result indicates that combining
different types of information (multiple layers) with correlation
could indeed help to find the true underlying community struc-
ture.

The monitoring scheme based on the score test statistic of
the MZIP model for each community pair is also conducted
on the Enron E-mail dataset. For each month from January
1999 to June 2002, we calculate the test statistic according to
the proposed method. As is shown in Figure 4, the abnormal
outbreaks first occurred in late 2000 and reached two peaks
in May 2001 and October 2001. It is found that real events
occurred in Enron during these special time periods. In October
2000, the Enron attorney discussed Tim Belden’s strategies (Tim
Belden was the head of trading at Enron and was one of the
first executives to be prosecuted and to admit wrongdoings at
Enron); in November 2000, Federal Energy Regulation Com-
mission (FERC) exonerated Enron. These two events mainly
correspond to a sudden increase in interaction intensity, which
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Figure 4. The Enron E-mail interaction patterns monitored with the proposed MZIP
method.

is obvious in Figure 4. In addition, in May 2001, the Chief
Executive Officer of the Division had more interactions with
the employees although his “in-control” pattern in previous
networks was more interaction with the Chief Financial Officer
and Vice President of the Division; in October 2001, the Enron
scandal was revealed, and every division of the corporation
experienced changes, reflected in the change of both λ and p
in the proposed model. These key events are consistent with the
findings of other researchers, such as Priebe et al. (2005), Xu and
Hero (2013), and Peel and Clauset (2015).

7. Conclusions

In this article, we propose a SBM for multilayer count weighted
networks called MZIP-SBM. This work provides a solution to
explicitly characterize the correlations among different layers
as well as the sparsity of interactions on real networks. Then a
monitoring scheme based on the proposed model is proposed
for monitoring community-level behavioral changes in a mul-
tilayer network. We also propose a variational-EM algorithm
to calculate the community memberships and the parameters
for MZIP models of each community pair. Through simulation
experiments and a case study on the Enron E-mail network,
our proposed model appears to be effective in characterizing
the correlation information among layers and the zero-inflated
interaction counts in count-weighted multilayer networks. The
proposed monitoring scheme is also demonstrated to perform
well in detecting changes in different change scenarios.

The major limitation of this proposed model is the computa-
tion complexity growth of parameter estimation algorithm with
regard to K, N, and M. Currently, almost all statistical (gener-
ative) models for multilayer networks have the same problem
of scaling in parameter estimation. Hopefully this issue will be
tackled by faster optimization techniques.

Statistical models for multilayer networks have aroused
great interest among researchers in recent years. Our proposed
model motivates several avenues of future research. First,
more exquisite monitoring methods based on the proposed
model could be investigated, such as the CUSUM or EWMA
control charts, to better capture the structural changes in

multilayer networks. Second, the SBM can be further extended
for generalized multilayer networks where the community
memberships can be different across all layers. Third, finding
a cleverer method of combining the local test statistics for each
community pair remains a topic for future work. Furthermore,
the proposed method inherits the limitations of the SBM in that
it assumes the weights on the edges are distributed conditionally
independently and thus fails to capture the realistic propensity
of the network to form triangles and other structures. The
development of versatile models and monitoring methods
remains an open challenge.
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